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Abstract. An equivalence is established between the problem of motion of a rigid body with
spherical dynamical symmetry about a fixed point under the action of potential and gyroscopic
forces and the problem of motion of a particle on a smooth fixed sphere. A new integrable case of
the first problem is constructed from a case of the second problem, recently found by Gaffet. Three
integrable cases of the second problem are obtained from the known integrable cases in various
problems of rigid-body dynamics.

1. Introduction

Integrable problems are rare exceptions in the totality of problems in mechanics. For them
one can make many important assertions about the global behaviour of motion and in some
cases the general explicit time solution of the equations of motion can be obtained. Integrable
systems are also of great importance in the study of nonintegrable systems near to them. The
quest for integrable mechanical systems remains one of the principal fields of investigation. As
there is no general method for deciding about the integrability of a given dynamical problem,
it is essential to tabulate all integrable problems found by diverse methods. This is even more
essential in rigid-body dynamics, where the usual method of trying some ansatz of an integral of
motion leads to tremendous difficulties. A natural way of constructing new integrable cases is
the generalization of known ones by introducing additional physical parameters. Remarkable
examples are the cases presented in [1, 2]. Another way is geometrically transforming the
problem of motion of a rigid body under a certain set of forces to another problem of motion of
a rigid body under a different set of forces, so that integrable cases of one problem transform
to integrable cases of the other. Various examples of this type are given in [3, 4].

Interesting as well are integrable problems of motion of a particle on a fixed smooth surface
under various types of force. Integrable motions on the sphere, separable in the sphero-conical
coordinates, are classical examples (e.g. [5,6]). Separable systems on the sphere were used to
generate conditional integrable problems of motion of rigid bodies (e.g. [7–10]). The motion
on a sphere is also related to other diverse physical systems. For example, it is met in the
study of the B-phase of the superfluid 3He, in the construction of certain wave solutions of the
Landau–Lifshitz nonlinear equation (e.g. [11]) and in the treatment of Dyson’s fluid dynamical
model of spinning gas clouds maintaining ellipsoidal shape [12].

In this paper we use the isomorphism between the problem of motion of a rigid body
with complete dynamical symmetry acted upon by potential and gyroscopic forces and that of
motion of a particle on a smooth fixed sphere to point out new integrable cases of each problem
using known cases of the other.
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Let the body have spherical dynamical symmetry with respect to the fixed point. Without
loss of generality we can take A = B = C = 1. Let that body be in motion under the action
of potential and gyroscopic forces so that it is characterized by the Lagrangian

L = 1
2ω2 + l · ω − V (γ) (1)

where ω = (p, q, r) = (ψ̇ sin θ sin ϕ + θ̇ cosϕ, ψ̇ sin θ cosϕ − θ̇ sin ϕ, ψ̇ cos θ) and γ =
(γ1, γ2, γ3) = (sin θ sin ϕ, sin θ cosϕ, cos θ) denote the angular velocity and the unit vector
fixed in space, both referred, as usual, to the body system, the functions l, V are vector and
scalar functions of γ and ψ, θ, ϕ are Euler’s angles of precession, nutation and proper rotation,
respectively. The Euler–Poisson equations are (see e.g. [13])

ω̇ + ω × µ = γ × ∂V

∂γ
γ̇ + ω × γ = 0 (2)

where

µ = ∂

∂γ
(γ · l) −

(
∂

∂γ
· l

)
γ. (3)

This system admits the cyclic integral

(ω + l) · γ = f (4)

corresponding to the angle of precession ψ and a geometric integral

|γ|2 = 1. (5)

From the integral (4) we can obtain

ψ̇ = f − l · γ − γ3(γ2γ̇1 − γ1γ̇2)

γ 2
1 + γ 2

2

. (6)

We first multiply Poisson’s equation (the second equation in (2)) vectorially by γ to obtain

γ × γ̇ + |γ|2ω − (ω · γ)γ = 0 (7)

and then use (4) and (5) to express the angular velocity in the form

ω = γ̇ × γ + (f − l · γ)γ. (8)

As in [10], the cyclic integral can be used to ignore the cyclic variable using the components
of the vector γ as configurational variables subject to the constraint 5. We obtain the Routhian

R = L − f ψ̇ = 1

2
(γ̇ 2

1 + γ̇ 2
2 + γ̇ 2

3 ) +
f γ3

γ 2
1 + γ 2

2

(γ2γ̇1 − γ1γ̇2) + (γ × l) · γ̇

−
[
V +

(f − l · γ)2

2

]
. (9)

Consider now the second problem: a particle of unit mass moves at the current point
r = (x, y, z) on the smooth fixed sphere

|r|2 = 1 (10)

under the action of potential and gyroscopic forces with scalar and vector potentials Vp and A

respectively:

L = 1
2 ṙ2 + A · ṙ − Vp. (11)

This system has two degrees of freedom and admits the integral

E = 1
2 ṙ2 + Vp. (12)
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It will be completely integrable in the sense of Liouville whenever we can find one more
independent integral.

The two Lagrangian systems (5), (9) and (10), (11) can be made completely identical if
we choose

Vp = V +
(f − l′ · r)2

2

A = r ×
[
l′ +

f z

x2 + y2
(0, 0, 1)

] (13)

in which f enters as a parameter and l′ is obtained from l through replacing γ by r. This
establishes the equivalence of the problem of motion of the body under consideration on a fixed
level f of the cyclic integral and the problem of motion of a particle on a sphere. In particular,
an integrable case of one of them immediately leads to an integrable case of the other. We now
use this situation to update the status of the two problems as concerns the integrable cases in
each of them.

Although in applications the vector A in (11) can arise due to various physical effects, it
is convenient to think of it as the vector potential of a magnetic field†, which can be expressed
as H = curlA. It is evident that the vector potential is not uniquely determined for a given
problem. A term of the form ∇�(r) can always be added to it without changing the Lorentz
forces in the equations of motion. On the other hand, only the radial component Hr = H ·r of
the magnetic field will contribute to the equations of motion on the sphere. Thus, the problem
is completely determined by the two scalar functions Vp and Hr if given on the sphere. We
now write the equations of motion in such a way that only those two functions appear in them.

The Lagrangian equations of motion of the system (11) under the constraint (10) have the
form

d

dt

∂L

∂ ṙ
− ∂L

∂r
= λr (14)

where λ is a scalar multiplier. This gives

r̈ = ṙ × H − ∂V

∂r
+ λr. (15)

Multiplying the last equation vectorially by r and noting that r · ṙ = 0, we eliminate λ and
obtain the final equations

r × r̈ = Hr ṙ − r × ∂V

∂r
. (16)

We note now that the term of A in (13) which depends on f contributes a constant value
f to Hr . An interpretation of the gyroscopic forces is possible as due to the Lorentz effect of
a fixed magnetic pole of strength f at the centre of the sphere on a unit charge carried by the
particle.

2. A new integrable problem in rigid body dynamics

In [12, 14], Gaffet has established the integrability of problem (10), (11) for the choice

Vp = K

(xyz)
2
3

A = 0. (17)

† Here MKS units are used. In Gaussian units the linear term in (11) should be divided by the velocity of light c. We
also assume that the velocity and acceleration are sufficiently small to neglect both relativistic effects and classical
radiation damping.
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A possible choice in the corresponding rigid-body problem is

V = K

(γ1γ2γ3)
2
3

l = 0 f = 0. (18)

In fact, it is easy to verify that the equations of motion (2) on the cyclic integral level

A(pγ1 + qγ2 + rγ3) = 0 (19)

admit the cubic integral

Apqr − 2K(γ1γ2γ3)
1
3

(
p

γ1
+

q

γ2
+

r

γ3

)
. (20)

This adds a new case to the list of eight known conditional integrable cases of the rigid-body
dynamics under axisymmetric forces (see [2], table 2). This new case has the unique feature
that its potential becomes singular when any one of the three principal axes of the body reaches
the plane orthogonal to the vector γ. Other cases are known in which the potential becomes
singular when the following hold.

(1) An axis of the body coincides with the vector γ. Examples are case 5 of table 1 and case 7
of table 2 in [2].

(2) One axis of the body reaches the plane orthogonal to the vector γ. Examples are cases 1,
2 and 4 of table 2 [2].

(3) Both types of singularity are present (case 3 of table 2 [2]).

It is to be noted that (18) is just the simplest choice of V, l, f . In fact, to determine all
possible choices one has to solve the relations (13) in V, l. The solution will involve f as
a parameter and the resulting vector l will always contain a term ν(γ)γ, depending on an
arbitrary scalar function ν(γ). The choice (18) characterizes the basic case of the integrable
class of problems in the sense of [2].

3. Integrable cases of the particle on a sphere

In addition to the above new case, there are four known basic integrable cases of a rigid body
with spherical dynamical symmetry. They are presented in [2]: cases 2 and 3 in table 1 and
cases 6 and 7 in table 2. Case 6 of table 2 corresponds to potentials on the sphere separable in
the sphero-conical coordinates. The other three cases correspond to nonseparable integrable
cases of (10), (11), which we list as follows.

(1) The case corresponding to Clebsch’s case. This is characterized by the pair of functions

Vp = ax2 + by2 + cz2

Hr = f.
(21)

The second integral of motion for this case can be obtained from Clebch’s integral,
substituting ω → f r − r × ṙ (compare with (8)).

I = a(yż − zẏ − f x)2 + b(zẋ − xż − fy)2 + c(xẏ − yẋ − f z)2

−(bcx2 + cay2 + abz2). (22)

This case is a nonseparable generalization of the well known separable Neumann integrable
problem [5] by the presence of the gyroscopic forces and reduces to it when f = 0.
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(2) The case corresponding to the Rubanovsky–Lyapunov case

Vp = s1x + s2y + s3z − abc

2

(
x2

a
+
y2

b
+
z2

c

)

+ 1
8 [2f + (b + c)x2 + (c + a)y2 + (a + b)z2]2

Hr = f + 1
2 [a + b + c − 3(ax2 + by2 + cz2)]. (23)

The second integral of motion is

I = (b + c)(yż − zẏ − Nx)2 + (c + a)(zẋ − xż − Ny)2

+(a + b)(xẏ − yẋ − Nz)2 + s1[(N + a)x + zẏ − yż]

+s2[(N + b)y + xż − zẋ] + s3[(N + c)z + yẋ − xẏ]

−(bcx2 + cay2 + abz2) (24)

where N = f + 1
2 [(b + c)x2 + (c + a)y2 + (a + b)z2].

(3) The case corresponding to case 7 of table 2

Vp = v +
K√
v

Hr = 1
2 [a + b + c − 3(ax2 + by2 + cz2)]

(25)

where v = 1
8 [(b + c)x2 + (c + a)y2 + (a + b)z2]2 − 1

2abc(
x2

a
+ y2

b
+ z2

c
) and K is a constant.

This admits the complementary integral

I = 1
2 [(b + c)(yż − zẏ − Nx)2 + (c + a)(zẋ − xż − Ny)2 + (a + b)(xẏ − yẋ − Nz)2]

−(bcx2 + cay2 + abz2) + K
a + b + c + ax2 + by2 + cz2

2
√
v

. (26)
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